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Section 1

OVERVIEN

It has been established through previous reports ([RvsM], [RAL]) that a

program can be written in the Ada language such that the program's storage

management requirements are determinable prior to its execution. In this

report, specific guidelines for ensuring such deterministic usage of Ada

dynamic storage requirements will be described. Because requirements may vary

from one application to another, guidelines are presented in a

most-restrictive to least-restrictive fashion to allow the reader to match the

appropriate restrictions to the particular application area under

investigation.

1.1 Structure

Section 2 of this report presents the most restrictive guidelines, in that

it enumerates programming restrictions sufficient to allow static storage

management for most Ada language implementation strategies (as described in

the report "Requirements of the Language Versus Manifestations of Current

Implementations" ([RvsM])). Subsequent sections describe increasingly more

permissive programming guidelines: each section waives one or more

restrictions present in preceding sections to provide the programmer greater

access to the full power and flexibility of Ada while introducing more

significant storage management requirements.

Each section:

.

,

W0-126

Explains the scope of enforced and waived restrictions pertaining to

the guidelines in question;

Provides an analysis of the consequences of waiving particular

restrictions in terms of loss of determinism and the additional

analysis methods that must be employed in light of the corresponding

waivers;

1-I OI TeCH
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Provides an enumeration of any possible simplifications that are

implementation or application-specific;

Includes one or more examples or case studies showing the use of the

guidelines.

1.2 Guideline Impact

The use of these guidelines in the development of Ada software may have an

impact on the software engineering process, particularly in terms of

portability, guideline implementation, and guideline side effects.

1.2.1 Portability

While consulting the case studies and applying the guidelines detailed in

this report, it is important to give adequate consideration to portability

issues. As a consequence of the implementation-specific characteristics of

storage management, the portability of programs written using these guidelines

cannot be guaranteed. Specifically:

I.

2_

A program that has sufficient storage under one implementation may

run out of storage under another implementation. Testing for

adequate available storage must be repeated for each target

implementation.

The restrictions proposed in this report apply to any reasonable

implementation of storage management, such as those described in

[RvsM], but it is easy to envision unreasonable but legal

implementations for which it is impossible to obtain any assurances

about adequacy of storage. Consider, for example, an implementation

that does not release storage for a subprogram's activation record

upon return from that subprogram. A program compiled under such an

implementation would be legal Ada, but could be severely limited in

complexity.

W0-126 I-2 SOFreCH



1.2.2 Guideline Implementation

The guidelines described in this report can be used in two ways: the

guidelines can be imposed on the developers from the outset, or the software

can be developed without restrictions and then "reverse-engineered" to comply

with the guidelines. Both approaches have specific advantages.

The restricted development approach ensures that system-wide impacts of

the guidelines are taken into consideration from very early in the development

process. This ensures that design issues of certain restrictions can be dealt

with, and helps the testing process by allowing the definition of specific

test plans.

The reverse-engineering approach permits the natural, unrestricted

development of the system based on the full power and expressiveness of the

Ada language, resulting in an openly designed system. This system then serves

as a baseline that can be refined for use on a variety of hardware

configurations that may require varying levels of constraints to be placed on

storage management for the system. For each such system, an analysis takes

place that focuses on applying the guidelines of this report by removing

specific features from the software. For example, the analysis might result

in the conversion of recursive routines to iterative equivalents, or the

placing of constraints on unconstrained objects.

The advantages of the reverse-engineering approach include the possibility

of acquiring a highly generalized baseline that is unconstrained by current

hardware considerations. With the continual refinement of storage devices, it

is conceivable that storage management restrictions for a current

configuration will not apply to a future configuration. This approach will

help to ensure that the software will not become obsolete, and can be upgraded

and extended more easily.

W0-126 i-3 50_'_C H



1.2.3 Guideline Side Effects

Another important consideration in the use of the guidelines of this

report is the likelihood of side effects. Introducing restrictions will often

result in a modified "black-box" view of the system or system component. For

example, certain guidelines in this report suggest adding constraints to data

items or applying additional checks on boundary values. Such modifications

may not affect the external specification of a program unit, or modify its

functionality, but may result in a modified behavior. The unit's execution

speed may differ, it's total storage usage may be changed, different or

additional exceptions may be raised implicitly or explicitly, or other

differences may exist. Such differences should be identified and clearly

documented, particularly when the development approach is oriented to

reverse-engineering as discussed previously.

V0-126 1-4 D TeC:H



Section 2

GUIDELINES TO GUARANTEE STATIC STORAGE REOUIREMENTS

It has been established in [RvsM] that Ada can be used in such a fashion

that the dynamic storage management requirements normally associated with Ada

can be constrained or eliminated. The storage management requirements

resulting from such constraints are similar to those of more familiar

general-purpose languages. In essence, the use of Ada can be restricted to

confine the programmer to FORTRAN or HAL-like programming that will allow

static determination of storage use. This section will examine such

restrictions in detail.

[RvsM] identifies the aspects of the Ada language that result in some form

of dynamic storage management requirement. Appendix B summarizes these

aspects with examples in the form of figures and code fragments. In

particular, these include:

l, Multiple simultaneous subprogram invocations - the number of

simultaneously active invocations of a subprogram may not be known

until run-time; the subprogram may invoke itself (known as "direct

recursion"), two subprograms may invoke each other (known as "mutual

recursion"), or a single subprogram may be invoked simultaneously by

multiple tasks.

, Objects with non-static bounds - the size of an object, such as a

variable object of an unconstrained array type or discriminated

record with unconstrained or variant elements may not be known until

run-time.

. Designated variables - the number of designated variables that a

program will attempt to create may not be known until run-time.

1 Task objects - the number of tasks that will exist, and their

relative temporal characteristics (i.e., their relationships in time

with each other, how many and which ones will exist simultaneously),

may not be known until run-time.

Based on this knowledge, an Ada program can be constructed restricting the

introduction of these characteristics altogether, thus ensuring fixed storage

requirements. Taken together, this list of restrictions perhaps appears more

w0-126 2-1 5Ol:]'eC H



constraining than is actually the case. In truth, sensible and planned

programming techniques will effectively limit many such characteristics

inherently. For example, although a directly recursive program may be written

such that the depth of the recursion is unknown until run-time, need not be

the case; one can frequently bound the depth of recursion without difficulty.

The same can be said for the determination of storage requirements for the

other characteristics as well. The case studies presented in the sections

that follow will elaborate specifically on such programming techniques.

2.1 Restrictions

i.

2.

3.

4.

Direct and mutual recursion are prohibited

Use of composite objects with non-static bounds is prohibited

Use of designated variables is prohibited

Tasking (except the environment task executing the main program) is

prohibited

2.2 Analysis

Based on the restrictions presented in this section, the only non-static

storage requirements of a program following these guidelines would be those

related to subprogram parameters and local data (typically based on a

Last-In-First-Out (LIFO) stack arrangement) for iterative subprograms. As

such, total Storage requirements for such a program can be determined by

analyzing and testing the code path(s) resulting in the deepest subprogram

call-nesting and largest collection of local data elements.

To perform such an analysis, construct a frame graph to represent the

program. It will be a rooted directed acyclic graph, where the root

corresponds to the main program. Each path from the root to a leaf of the

graph represents a possible set of subprogram or declare-block frames active

at the same time. Construct a set of test cases exercising each feasible

combination of simultaneously active frames. If sufficient storage exists to

run these test cases, the program will never run out of storage.

W0-126 2-2
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Notes:

I.

,

Testing all paths in the frame graph is not the same as testing all

paths in a flow chart (code paths). A frame graph describes

subprogram activation and declare-block execution relationships. In

contrast, a code path is generally defined as any segment of code

having one entry point and one exit point. Thus, a single subprogram

might consist of one or many code paths. For the purposes of

determining dynamic storage requirements under the guidelines of this

section, only the active frame path is relevant.

Some paths from root to leaf are not feasible, i.e., the

corresponding combination of calls will never arise because of the

logic of the subprograms. Consider the following example: A calls C

with parameter value 1 and B calls C with parameter value 2. When

called with parameter value I, C calls D and when called with

parameter value 2, C calls E. Then the frame graph is:

A B

\ /

C

/ \

D E

The paths A-C-D and B-C-E are feasible, but the paths A-C-E and B-C-D

are not.

2.3 Implementation-dependent Simplifications

2.3.1 Static Storage Allocation

An implementation may provide a pragma (e.g., Pragma STATIC [AUTY]) that

indicates to the compiler that static data allocation is to be used where

possible. In a sense, the use of such a pragma would have a similar effect to

declaring all objects in library packages, in that the objects exist for the

duration of program execution. For example, local and parameter data for a

subprogram is defined in a static memory area rather than in a subprogram

stack. The use of such a pragma would in effect disable recursion and

multiple task execution for a subprogram. An obvious benefit of the use of

this approach is an improvement in the determinism of storage requirements

while limiting the artificial constraints on the programmer that might

otherwise be required. Other benefits include the possibility of improved

data access efficiency and faster subprogram invocation sequences.

W0-126 2-3 SOFrecH



A likely negative result of the use of a static pragma would be an overall

(perhaps dramatic) increase in net storage requirements for the program. One

of the fundamental benefits of dynamic storage mechanisms is reduced net

memory requirements based on the ability to reuse storage. By contrast, the

storage used for statically allocated objects is reserved whether or not the

objects are actually used.

If such a capability is used, testing and analysis requirements will be

similar to those of other languages that use a static allocation scheme.

2.3.2 Composite Objects Passing Mechanism

If the implementation passes composite objects by reference, then

composite formal subprogram parameters may be unconstrained, allowing the

passing of static objects of arbitrary size. The Ada language definition

[LRM] permits specific implementations to determine whether composite object

parameters should be passed by copy or by reference. Many implementations

choose to pass such objects by reference due to the obvious advantages in

efficiency, but such an implementation is not guaranteed. Further, an

implementation may use both mechanisms: different calls to the same

subprogram may result in the use of either mechanism.

NOTE

The LRM states that a program is erroneous if its effect

depends on the mechanism used for passing parameters.

However, dependency of a program on a particular mechanism in

order to comply with storage management requirement

restrictions does not constitute a dependency of the behavior

of the program. Thus the LRM does not rule out such

dependencies. The possible side-effect of such a dependency

is reduced portability of storage usage tests for the program

and consequently reduced portability for the program itself.

Of course, the passing of composite parameters is still governed by the

guideline restricting the use of non-static composite objects.

WO-126 2-4 SOFTeCH



2.3.3 Local Static Storage Allocation

If the implementation allocates storage for all subprogram local objects

(including those defined in declare-blocks within the subprogram body) in the

subprogrames activation record, then the frame graph can be reduced to a

subprogram calling graph. This will reduce the number of required test cases

by reducing the total number of graph paths.

If the compiler gives the storage cost of a subprogram call (or if this

can be determined by a tool), the paths in the calling graph can be explored

analytically instead of by testing. It would be possible, for example, to use

a tool that determines calling graphs in conjunction with compiler-or

tool-generated storage cost values to provide automated determination of

storage requirements for a given program.

2.4 Application-specific Simplifications

None.

2.5 Case Studies - Guideline Examples

The following paragraphs present examples of programming within each of

the restricted areas of this section (recursion, designated variables,

non-static composite objects, and tasks).

2.5.1 Prohibit Direct or Mutual Recursion

While it is true that recursion is often a very useful programming

approach in terms of clear algorithm presentation, it is also true that

recursion is never necessary and is actually seldom used. [HOROWITZ] and

others have shown that all recursive programs can be written iteratively, and

that the iterative version is often more efficient than the recursive version.

WO-126 2-5 SO_"eC_H



The impact of implementing an algorithm iteratively rather than

recursively for the most part is a trade-off between clarity and efficiency.

A recursive implementation is generally more succinct, particularly where the

algorithm in question is recursively defined (e.g., factorial). An iterative

implementation, on the other hand, will often enjoy improved efficiency

because the overhead of parameter passing and subprogram entry and exit is

avoided. Of course, the magnitude of the difference is highly dependent on

the algorithm and compiler in question.

As [HOROWITZ] shows, there is a functional equivalence between programs

written in either manner. A recursive algorithm can always be converted to an

iterat_ve algorithm by following a series of steps described by [HOROWITZ}

that essentially simulates the recursive calls of a subprogram by instituting

a local stack onto which "parameter" and local data is pushed. Unfortunately,

the resulting code may present the same dynamic storage requirements as a

recursive program (e.g., if the stack is implemented with access objects.) If

the stack is implemented with the use of static objects, a limitation on the

number of "recursive" loops is implied, however the same effect can be

achieved using true recursive programs (see Section 6"for examples). This

approach is most useful when the software is to be written in languages that

do not support recursive programming.

Many recursive programs that do not involve a great deal of local or

parameter data can be converted to iterative equivalents with a streamlined

approach that amounts to replacing recursive calls with while-loops. Such

streamlining may change a function's storage requirements from being dynamic

and dependent on its parameters to being entirely static and easily

determinable. For example:

function FACTORIAL (N: positive) return positive is

begin
if n = I then

return I;

else

return n * FACTORIAL (n-l);

end if;

end FACTORIAL;

%;0-126 2-6 _O_'_C H



can be written as an iterative algorithm by replacing the IF and RETURN

statements with WHILE-loops and assignments as shown below. Note that an

additional piece of local data is required to track the factorial value that

was passed along the stack as a return parameter in the recursive version.

function FACTORIAL (N: positive) return positive is

fact : positive := I;

begin

for I in 2 .. n loop

fact := fact * n;

end loop;

return fact;

end FACTORIAL;
J

The result of this transformation is better determinism of storage

requirements. In the case of the recurslve FACTORIAL, we know that a POSITIVE

parameter N will be stored on the subprogram stack with each call to

FACTORIAL, but we do not know the depth of that stack because the number of

calls to FACTORIAL is directly proportional to the value of N. In the case of

the iterative FACTORIAL, there will be exactly one call to FACTORIAL for a

given calculation.

NOTE

To be precise, the maximum storage requirements for the

recursive FACTORIAL are also deterministic, ge know that

for each call to FACTORIAL, there will be N-1 additional

calls to FACTORIAL. Hence the total number of calls for a

given N will be N. The maximum value of N is known by the

parameter type to be POSITIVE'last; the maximum depth of

recursion is thus also POSITIVE'last. Therefore, a test to

determine whether available storage is adequate in the worst
case would include the call:

x := FACTORIAL (POSITIVE'last);

Although one would expect that such a test is not practical,

Section 6 will exploit the fact that the maximum depth of

recursion of some subprograms is determinable based on the

range its parameter values, thus lifting the recursion
restriction.

Of course, cases where a transformation of a program from recursive to

iterative is simple are not always evident, and the transformation may not be

intuitive. In these cases, the approach described by [HOROWITZI may be

preferred. " "
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2.5.2 Prohibit Composite Objects vith Non-static Bounds - Declarations

The use of non-static bounds for composite objects (arrays and records) is

a convenient and useful feature of Ada. The dynamic storage risks of using

non-static bounds can be minimized or eliminated as described in Section 5 of

this report. The restrictions on the use of non-static bounds affect two

areas: non-static composite data declarations and non-static composite

parameters.

In the case of data declarations, consider the subprogram SORT INPUT DATA

which reads an arbitrary list of integers from the default input device, sorts

it through a call to some subprogram SORT, then writes the sorted list to the

default output device. In this example, we assume that the appropriate I/O

and sort routines have been made available.

procedure sort input data (n : in integer) is

data list : LIST (l..n);

begin

for i in 1..n loop

get (data_list(i));
end loop;

sort (data_list);

for i in l..n loop

put (data_list(i));

end loop;

end sort_inputdata;

Note that the length of array DATA LIST is not determinable prior to

run-time within the given context. This subprogram is therefore not permitted

under the restrictions of this section. Similar restrictions inherent in a

FORTRAN- or HAL-like implementation could be overcome as follows:

W0-126 2-8 sOFrecH



procedure sort_input_data (n : in integer) is

max size : integer constant := 25;

data list : LIST (l..max size);

-- or some other value

OUT OF RANGE : exception;

begin

if n >= max size then

raise OUT OF RANGE;

end if;

for i in l..n loop

get (data list(i));

end loop;

sort (data_list);

for i in l..n loop

put (data list(i));

end loop;

exception

when OUT OF RANGE =>

put line ("Value out of range.");
when others =>

null;

end sort_input_data;

One side effect of this solution is that the significant length of the sort

list is unknown. Solutions to this side effect are presented later in this

section.

As Section 5 describes, the same deterministic effect can be accomplished

more elegantly with the use of an appropriate subtype for the input value N.

Note also that the exception OUT OF RANGE need not have been defined, nor is

the check of the value of N needed. If these are removed, CONSTRAINT ERROR

will be raised within the first FOR-loop, which can then be handled by an

exception handler either within the subprogram or externally. The

implementation shown above, however, serves to avoid entering the loop in the

first place, and also precisely identifies the nature of the error.

W0-126 2-9 SOFTeCH



The significance of the above alternative is that, although the

specification of the subprogram is the same as with the original

implementation (that is, the subprogram receives the same parameters and

produces the same output when the value is within range), the run-time storage

requirements of the alternative implementation are readily determinable: the

worst case requirements are directly related to the definition of the MAX SIZE

constant (in this case, 25).

2.5.3 Prohibit Composite Objects with Non-static Bounds - Parameters

The other area of impact for the "no non-static composite objects"

restriction is that of subprogram parameters. For example, the Iterative SORT

procedure described below would not be permitted under this restriction

because the parameter LIST is defined as an unconstrained array of integers:

-- for this subprogram, type LIST is array (I..<>) of INTEGER;

procedure SORT (a : in out LIST) is

j : POSITIVE;

t : INTEGER;

begin

for i in a'range loop

j := i;

for k in j+l .. a'last loop
if a(k) < a(j) then

j := k;

end if;

end loop;

t := a(i);

a(i) := a(j);

a(j) := t;

end loop;
end SORT;

As a result, the size of the passed array at any given invocation is not

determinable prior to run-time. One alternative implementation similar to

that used above would be as follows, where LIST is redefined as a constrained

array of integers:

W0-126 2-10 SO;=TeCH



-- for this subprogram, type LIST is array (1..25) of INTEGER;

procedure SORT (a : in out LIST) is

j : POSITIVE;

t : INTEGER;

begin

for i in a'range loop

exit when a(i) = END OF LIST;

j := i;

for k in j+l .. a'last loop

exit when a(k) = END OF LIST;

end SORT;

Here, the unconstrained LIST parameter is replaced with a constrained

array of length 25. Although the maximum storage requirements are now known,

further bookkeeping must be maintained to ensure that only the significant

values in the list are sorted. Above, the last significant value in the array

is followed by a constant called END OF LIST. Based on this, the SORT routine

is able to detect the end of the list of values to be sorted.

a := (4,3,67,5,12,3,4,66,1234,-4,18,END OF LIST, others => 0);

Alternatively, the length of the list might be passed as an additional

parameter to the sort routine:

procedure SORT (a : in out LIST; length : in integer) is ...

As the implementation-dependent simplifications described above indicate,

this restriction need not extend to unconstrained parameters if the

implementation passes composite objects by reference rather than by copy. The

Ada language definition allows either approach or even a mixture of both, at

the discretion of the implementor. If the implementation takes the "by

reference" approach in all cases, then the passing of non-static arrays can be

permitted without danger. If the implementation does not use this approach in

all cases, then the equivalent could be accomplished by the application by

passing composites with the use of access objects. However, the restriction

against the use of designated variables has not yet been waived (below).
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2.5.4 Prohibit the Use of Desisnated Variables

The restrictions of this section explicitly prohibit the use of designated

variables, and, by definition, access types and objects of access types. This

may be overly restrictive, as designated variables can be used in a

deterministic fashion (see Section 5), however it is possible to program

within these restrictions if necessary. For example, consider the following

procedure which uses a linked-list structure to implement a First-In-First-Out

(FIFO) queue:

package body DISPATCHER is

type DISPATCH PACKET;

type DISPATCH-LINK is access DISPATCH PACKET;

type DISPATCH-PACKET is

record

TSC ID : tsc id type;

START TIME: time;

NEXT : DISPATCH_LINK;

end record;

type DISPATCH QUEUE TYPE is
record

COUNT: integer := O;

FIRST: DISPATCH LINK := null;

LAST : DISPATCH-LINK := null;

end record;

DISPATCH QUEUE : DISPATCH QUEUE TYPE;

procedure INITIALIZE ....

procedure REMOVE ....

procedure INSERT (tsc id: in tsc id type) is

packet : dispatch link;

begin

-- This procedure

-- assumes the queue

-- has been

-- initialized.

packet := new dispatch_packet'(tsc_id => tsc id,
start time => CLOCK,

next => null);

dispatch_queue.last.next := packet;

dispatch_queue.last := packet;

dispatch_queue.count := dispatch_queue.count + i;
end INSERT;

end DISPATCHER;
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Here, the queue is implemented as a linked list of records of type

DISPATCH PACKET. Each packet contains a link to the next packet. Further,

there are two links defined as part of the queue itself which keep track of

the start and end packets in the queue. This data structure, which amounts to

a dynamically-sized stack, can be bounded and implemented as follows:

package body DISPATCHER is

null link : integer constant := 0;

max_dispatch : integer constant := 50;

type DISPATCH LINK : integer range null link .. max dispatch;

type DISPATCH PACKET is

record

TSC ID : tsc id type;
START TIME : time;

end record;

type DISPATCH QUEUE TYPE is
record

COUNT : integer := O;

QUEUE_ENTRY : array (i .. max_dispatch) of DISPATCH_PACKET;

FIRST : DISPATCH LINK := I;

LAST : DISPATCH-LINK := I;

end record;

DISPATCH_QUEUE : DISPATCH_QUEUE_TYPE;

procedure DELETE ....

procedure INSERT (tsc id: in tsc id type) is

begin

dispatch_queue.last := dispatch_queue.last + 1;

dispatch_queue.queue_entry(dispatch queue.last) :=

(_sc_id => tsc id,
start time => CLOCK);

dispatch_queue.count := dispatch_queue.count + I;

end INSERT;

end DISPATCHER;
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Note that the NEXT field of the DISPATCH PACKET record is no longer needed

because each packet can assume that the next element in the queue is the array

element that follows it sequentially. Similarly, an initialization procedure

is no longer needed to allocate the first packet and set the initial pointers

to it. In any case, the total size of the queue is determinable prior to

runtime. Adequate analysis and testing must ensure that the MAX DISPATCH

limit is adequate.

Similarly, more complex dynamic data structures such as doubly-linked

queues where inserts and deletions can occur at any point within the queue can

be modeled by extension of the approach used above, although with some

difficulty. Additional data structures, such as a "free list" array that

tracks free packets, must be maintained to provide the desired effect.

2.5.5 Prohibit Tasking

All programs that use a concurrent model of design can be implemented

sequentially, though possibly with significant loss in clarity. Appendix A

presents an example of two programs written to the same specification.

Although they are functionally identical, one program is purely sequential

while the other makes use of Ada tasking.
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Section 3

INTRODUCING A FIXED NUMBER OF TASKS

It is not necessary to eliminate all tasks from a program to provide

reasonable determinism of storage management requirements. There are four

areas of risk regarding storage management when using tasks:

i.

2.

3.

4.

Hultiple Simultaneous Invocations of a Subprogram

Variable Arrays of Task Objects

Task Objects Declared in a Variable Loop

Task Object Declared in Recursive Subprogram

The latter three situations can be categorized as the potential invocation of

an "Unknown Number of Tasks" and are dealt with separately in Section 7 of

this report. The first situation is a concern even where the number of tasks

to be executed is known prior to runtime. By the restrictions of this

section, we know that there are a known number of tasks and that they begin

execution during initial program elaboration. What we do not know, however,

are the temporal characteristics of the tasks and the subprograms that are

called by those tasks. We do not know how many of the tasks will be executing

simultaneously or for how long their executions will overlap, since such

execution patterns are highly dependent on implementation, application, and

transient factors such as data input.

Despite this, it is possible through careful analysis to demonstrate

through "worst-case" scenarios that available storage will be adequate to meet

the needs of any fixed-task situation.
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3.1 Restriction Waived

The use of a fixed number of tasks is permitted. Each task is declared

either as a single task or as a task object that is not part of an array. All

tasks are declared in library packages or within the main subprogram unit.

3.2 Analysis

The frame graph for each task is constructed. Each graph is a rooted

directed acyclic graph. The root for the main task corresponds to the main

program and the root for each other task is the corresponding task body. A

dummy task is added with one entry called Freeze Caller and a null task body.

A call on this entry has the effect of permanently blocking a task at the

point of an entry call. During testing, calls on Freeze Caller should be

inserted at different points in the bottom level subprograms of each task

frame graph so that all feasible active-subprogram combinations of each task

are attained simultaneously with all feasible active-subprogram combinations

of all other tasks.

A set of test cases based on this approach will demonstrate that the

storage capacity of the system is adequate under all conditions.

3.3 Implementation-dependent Simplifications

If the compiler enforces limits imposed by STORAGE SIZE representation

specifications for task types, then a limit can be imposed for each task

object and tasks can be tested individually. This greatly reduces the number

of combinations that must be tested and eliminates the need for the dummy

task. There should also be an integrated test to validate that sufficient

storage exists for all of the task stacks of the sizes specified.
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If the implementation can be instrumented to determine the amount of

storage in use by a task at a given point, each task is tested individually to

determine the active-subprogram combination at which the task's storage usage

peaks. Then all tasks are tested together with each task at its point of

maximum storage usage. This minimizes the number of required combinations

while ensuring that the worst-case combination is tested.

3.4 Application-specific Simplifications

If two tasks interact in such a way that one task is at its deepest depth

of subprogram calling while the other is at its shallowest, and if the

implementation allows the same storage to be used for more than one task

stack, the approaches above may be overly pessimistic. However, the analysis

required to establish that a program is safe because of this task interaction

(assuming that safety could not be established in the absence of this

interaction) is quite complex, and it is not pursued further in this report.

For example, such an analysis would include determining that fragmentation

does not overly constrain the ability of one task to make use of storage

released by the other task.

3.5 Case Study

The daily routine of a household consists of a mixture of tasks (such as

cleaning the laundry, cooking, shopping, and so forth) that are performed by

individuals within the household. In a household with more than one person,

it would not be equitable or efficient to perform those duties in a sequential

manner. More likely, the daily routine is divided up among the members of the

household who perform their individual duties independently and concurrently.

The program skeleton below crudely depicts a few such chores:
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package body daily_procedures is

procedure select clothing is ...

procedure buy items is ...

procedure punch_timeclock is ...

procedure sleep is ...

procedure catch bus is

procedure pay_exact fare is ...

begin

pay_exact fare;
end catch bus;

procedure do household chores is

procedure-do_laundry

procedure do cooking

procedure do cleaning

begin

if laundry dirty then

do laundry;

end if;

do_cooking;

if house dirty then

do cleaning;

end if;

end do household chores;

end daily_procedures;

is -,*

is ...

is ...

with Daily Procedures;

procedure daily_routine is

task go_shopping;

task go to york;

task body go_shopping is separate;
task body go to work is separate;

begin

select clothing;

do household chores;

sleep;

end daily routine;

separate (daily_routine)

task body go_shopping is
begin

select clothing;

catch bus;

buy_items;

end go_shopping;

separate (daily_routine)

task body go to work is

begin

select clothing;

catch bus;

punch_timeclock;

end go to work;
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Here, the daily routine is depicted by three tasks: the main task (procedure

daily_routine) and two single task objects (tasks go_shopping and go to work).

Since the tasks are single, this program conforms to the restrictions of this

section. For an analysis of the storage requirements of this program, we will

first present the calling graphs for each task. For simplicity, a short

identifier will be assigned to each subprogram or task unit as follows:

UNIT ID UNIT ID

daily_routine tl do household chores e

go_shopping t2 do,laundry - f

go to work t3 do_cooking g

select clothing a do cleaning h

catch bus b sleep i

pay_exact fare c punch_timeclock k

buy_items- d

A complete calling graph for this program would appear as follows:

t2 -tl- - - t3

il\ il\ il\
abd aei abk

I II\ I
c fgh c

Removal of the dashed lines provides three separate calling graphs, one for

each task. Based on these graphs, the analyses described in Sections 3.2,

3.3, and 3.4 then can be applied to each calling graph individually to

determine storage management requirements for program execution.
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Section 4

INTRODUCING DESIGNATED VARIABLES

The use of designated variables is not risky in and of itself in terms of

storage management requirements, however usage such that the number of

allocations cannot be determined prior to run-time and the potential for

storage fragmentation adds a measure of risk to the use of designated

variables. This section permits the controlled use of designated variables.

4.1 Restriction Valved

The use of allocators to allocate objects of any constrained subtype other

than a task type or a subtype containing a task-type subcomponent is

permitted. The programmer is restricted to a maximum number of allocations if

the total number of allocations is not otherwise analytically determinable.

4.2 Analysis

To ensure that sufficient storage is available for all Ada

implementations, the worst case scenario of storage usage must be tested. The

worst case is defined as the case in which no deallocation occurs by garbage

collection or the use of UNCHECKED DEALLOCATION, since these features are not

required by the language. Because all allocated storage will be from "new"

storage rather than "reclaimed" storage, fragmentation is not an issue if this

approach is taken.

For each elaboration of an access-type declaration, the maximum number of

times that an allocator corresponding to that access type will be evaluated

must be established. For an access type declared in a library package, this

maximum is defined as the number of times during the life of the program that

such allocators will be evaluated. For an access type declared in a

subprogram, it is defined as the maximum number of times such allocators will
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be evaluated during any one activation of the subprogram (excluding the time

that a recursive invocation of the same subprogram is active, as the

non-recursion restriction has not yet been waived). Because this is a

worst-case analysis, it is the total number of allocator evaluations that is

relevant, not the net number of variables allocated when deallocated variables

are subtracted.

Establishment of this maximum may be based on analysis of the algorithm,

although a maximum might be imposed a priori on the algorithm writer when

necessary and hard-coded into the program. Examples o£ such analysis and

limits are provided in Section 4.5.

Once the maximum is established, a test program must be created by

modifying the program. Upon entry to the scope in which each access type is

declared, the test program allocates the maximum number of designated

variables as specified. The test program may then be tested as described in

earlier sections. If the test does not raise STORAGE ERROR, execution of the

original program should not.

It is also important to consider implicit storage allocation, such as that

arising on the return of an object through an unconstrained function return

value, or a discriminated record returned from a procedure. Not all storage

allocations are immediately obvious.

4.3 Implementation-dependent Simplifications

4.3.1 Analysis Based On Overhead Information

In considering the amount of storage consumed by an allocation, it is

important to take into account overhead required by the given implementation,

including:

. storage used for control information
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, storage rendered unusable because the implementation only performs

allocation in fixed-sized blocks and some part of the block will be
left unused.

If the compiler or its documentation provides information about object

overhead, or about the net sizes of objects in unconstrained array and record

types, allocations of objects in such types can also be permitted. Storage

requirements can be tested by determining the maximum amount of storage that

will be required rather than the number of allocations. The worst-case method

of establishing this maximum is to take the maximum number of allocations and

multiply it by the size of the largest object that will be allocated. It may

be possible to establish a maximum based on varying sizes of allocated objects

of a given type rather than the largest object if such sizes can be determined

analytically or by a priori requirements on the program as with constrained

types. For example:

type list is array (integer range <>) of integer;

type access list is access list;

new llst 1 : access list;

new-list-2 : access-list;

new-list-3 : access-list;

new list I := new list (I..18);

new-list-2 := new list (2..5);

new-list-3 := new list (6..47);

-- 18 elements

-- 4 elements

-- 42 elements ...

Within this context, the largest object of type LIST that is ever allocated

contains 42 elements, with three total allocations. Thus a pessimistic

maximum of (42 * 3 = 126) can be established. Alternatively, the simplicity

of this example permits a more precise maximum of (18 + 4 + 42 = 64) to be

established.

Once the maximum storage requirement is determined, the test method

described above can be used to allocate the storage.
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4.3.2 AnalTsis Without Overhead Information

If overhead information is not available, the worst case (i.e., the most

rigorous test) can usually be determined by allocating the smallest possible

object of the type a number of times equal to the total number of elements to

be allocated. In the example above, this would manifest as 64 allocations of

an object of type LIST with a length of I:

new list : access list;

for i in I .. 64 loop

new list := new list(l..l);

end loop;

Note that this example assumes that no garbage collection takes place to

reclaim allocated storage that is no longer designated by an access value

(with each iteration of the loop, the NEW LIST access value designates a

different LIST object, destroying any access to the previous object. As such,

a garbage collection scheme may deallocate the related storage). For

implementations that provide garbage collection, this situation can be averted

by retaining all access values, as with the array in the following example:

new list : array (I..64) of access list;

for i in new list'range loop

new list(i) := new list(l..l);

end loop;

4.3.3 Analysis Based on Specification of Storage Requirements

If the compiler accepts STORAGE SIZE representation clauses for access

types, and storage is reserved when the type is delcared, they can be included

in the program based on the analysis of the maximum amount of storage that

will be needed. There is then no need to transform the program by adding

allocations: exercising each path in the calling graph will ensure that the

implementation is able to reserve collection regions of the required capacity.
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4.4 Application-Specific Simplifications

If the algorithm performs unchecked deallocation for a constrained

designated type, and if the implementation ensures that freed storage in such

a collection region is always available for reallocation, storage requirements

can be tested by having the test program allocate onlythe maximum net amount

of storage that will be allocated at any one time. Additionally, this net

maximum can be used for determining the value in STORAGE SIZE representation

clauses.

4.5 Case Study

An example of a program where the maximum number of allocations is

determinable analytically is the DISPATCHER example from Section 2.5 which is

repeated below.

package body DISPATCHER is

type DISPATCH_PACKET;

type DISPATCH LINK is access DISPATCH PACKET;

type DISPATCH PACKET is
record

TSC ID : tsc id type;

STAI_T TIME: time;

NEXT : DISPATCH_LINK;
end record;

type DISPATCH QUEUE TYPE is
record

COUNT: integer := 0;

FIRST: DISPATCH LINK := null;

LAST : DISPATCH-LINK := null;

end record;

DISPATCH_QUEUE : DISPATCHQUEUE_TYPE;

procedure INITIALIZE ....

procedure REMOVE ....
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procedure INSERT (tsc id: in tsc id type) is

packet : dispatch_link;

-- This procedure assumes

-- the queue has been
-- initialized.

begin

packet := new dispatch_packet'(tsc id => tsc id,
start time => CLOCK,

w

next => null);

dispatch_queue.last.next := packet;

dispatch queue.last := packet;

dispatch queue.count := dispatch_queue.count + I;

end INSERT;

end DISPATCHER;

Procedure INSERT allocates exactly one object of type DISPATCH PACKET.

Because DISPATCH LINK is defined in a library package, the total number of

allocations that will be created during the life of the program must be

determined. That total can be determined analytically in many cases, such as

in the main program below:

with dispatcher;

with transient data; use transient data;

with task_info_

procedure main is

begin

case transient data.system_status is

when CRITICAL =>

dispatcher.insert (alert);

dispatcher.insert (report);

dispatcher.insert (watch);

when NORMAL =>

dispatcher.insert (report);

dispatcher.insert (watch);

when HIBERNATE =>

dispatcher.insert (sleep);
when GLITCH =>

dispatcher.insert (alert);

dispatcher.insert (report);

dispatcher.insert (sleep);

end case;

end main;
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In this example, no more than three designated objects will ever be

allocated. A valid test program would initiate a SYSTEM STATUS value of

either CRITICAL or GLITCH to ensure that adequate storage will be available

for these cases.

If the test of SYSTEM STATUS occurs on a continual basis rather than once

(e.g., if the case statement above is placed within a continuous loop), a

limit may be imposed on the writer of the program to ensure that only a

specific number of allocations occur. For some applications it may be

possible to place a limit on input values driving such a loop. In other

cases, an allocation counter can be maintained for the specific access type.

For example, a counter (TOTAL_ALLOC) might be delegated for the DISPATCH LINK

type as shown below:

MAX ALLOCATIONS : integer constant := 50;

typ_ DISPATCH QUEUE TYPE is
record

TOTAL ALLOC : integer range 0 .. MAX ALLOCATIONS := O;

COUNT- : integer := 0;

FIRST, LAST : DISPATCH LINK := null;

end record;

DISPATCH_QUEUE : DISPATCH QUEUE TYPE:

procedure INSERT (tsc id: in tsc id type) is

packet : dispatch_link;

begin

if dispatch_queue.total_alloc >= MAX_ALLOCATIONS then

take some action;

else

dispatch_queue.TOTAL_ALLOC := dispatch_queue.TOTAL_ALLOC + I;

packet := new dispatch_packet'(tsc_id => tsc id,

start time => CLOCK,
m

next => null);

end if;
end INSERT; " '
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As noted previously, this approach is worst-case oriented in that it does

not take into account storage that is reclaimed by garbage collection or calls

to UNCHECKED DEALLOCATION. This is clearly not practical for applications

where a potentially infinite number of allocations will take place during the

life of the program. For such cases, the net amount of storage (total

allocations less deallocations) must be used to provide practical testing. If

the implementation supports STORAGE SIZE representation specifications,

determinism can be maintained assuming:

I. The total storage set aside for the given type is greater than the

net maximum that will ever be required, and

2. The implementation ensures that storage freed by calls to

UNCHECKED DEALLOCATION is always available for reallocation.

In the context of the DISPATCHER example, a DELETE procedure might be made

available as a complement to the INSERT procedure. The DELETE procedure would

remove a given packet from the DISPATCH_QUEUE, then deallocate the related

storage via a call to UNCHECKED DEALLOCATION. If a determinable number of

calls to INSERT are followed by a complementary number of calls to DELETE, the

amount of storage required is determinable by multiplying the maximum number

of inserts that do not have corresponding deletes at any given time by the

amount of storage required for a single allocation. This amount can then be

used as the value for a STORAGE SIZE representation specification.
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Section 5

INTRODUCING NON-STATIC ARRAYS

Thus far, only array objects with static bounds have been permitted. This

section relieves that restriction by exploiting the fact that the maximal

storage requirements of a given array object can be determined from the bounds

of the array type (or subtype) even when those requirements cannot be

determined directly from the bounds of the object itself.

5.1 Restriction Waived

Arrays with non-static bounds are allowed, provided that the components of

the arrays are not task objects or objects with task-type subcomponents. The

restriction is waived for both declared objects and parameters.

5.2 Analysis

The maximum size for each array object is determined by analysis of the

bounds definition of each array type or subtype. At most, the maximum size of

an array object is a function of the the range of the index type of the array

type or subtype. For example, for the following definition of type int_array,

type int_array is array (INTEGER range <>);

the maximum size of any object of this type can be defined as:

(INTEGER'Iast - INTEGER'first + 1)

Further, the bounds of an array object of this type will provide further

bounds information, such as

A : int_array (I..i0);

which obviously indicates a size of I0, or
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A : int_array (START .. FINISH);

which indicates a size of (FINISH - START + I). If START and FINISH are

variables, the range of their respective type or subtype will provide the

specific values needed for this calculation. For example, examine the

following context:

subtype LOWER_BOUND is INTEGER range 1 .. 15;

subtype UPPER BOUND is INTEGER range 80 .. 132;

procedure make_array (START : LOWER_BOUND; FINISH : UPPER_BOUND) is

A : int_array (START .. FINISH);

The maximum size of array A can be determined by supplying the range data of

the boundaries into the formula provided above:

maximum size = UPPER BOUND'last - LOWER BOUND'first + 1

which in this case is (132 - 1 + I) or 132.

Based on this information, testing the program for adequate storage is a

simple matter of providing test cases that exercise the greatest range of

bounds that the array can be expected to accommodate.

5.31mplementation-dependent Simplifications

None.

5.4 Application-specific Simplifications

If all non-static arrays are bounded by variables whose types or subtypes

have ranges that reflect true needs (as shown in the examples above), testing

can be both rigorous and realistic. This observation is more a matter of
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appropriate Ada programming style than restrictive guidelines. Further,

violations of such bounds will often be detected at compile-time (e.g.,

passing a static INTEGER value as a parameter that is out-of-range of a formal

integer subtype that will be used as an array bounds in the called subprogram)

resulting in higher reliability than many equivalent non-Ada programs.

5.5 Case Stud_

Although it is possible to write programs with arrays of arbitrary length,

proper Ada programming style will prevent non-determlnlsm of maximum storage

requirements. For example, assume some function PAD_I pads a given character

string with a given pad character. A call to PAD 1 with the parameters

("12.34", I0, '......') will result in a return value of " 12.34":

function PAD 1 (STRING_OBJECT : STRING;

width : NATURAL;

pad_char : CHARACTER := ' ') return STRING is

s out : STRING(l..width);

begin

s_out (I .. width - STRING_OBJECT'length) := (OTHERS => pad_char);

s out (width - STRING OBJECT'length + 1 .. width) := STRING OBJECT;

return s_out;

end PAD I;

In the above implementation of PAD, a local array S OUT is declared with a

non-static upper bound of subtype NATURAL. For a given Ada implementation,

the maximum storage requirements for a call to this subprogram are

determinable analytically or verified through testing based on the value of

NATURAL'last, as with the parameters: ("this is a test", NATURAL'last, '*').

It is reasonable to assume that few applications would require the use of

the full range of values of NATURAL for the width parameter. For instance, an

application might use a PAD routine to pad characters for display on an

80-column CRT, eliminating the need to accommodate pad widths of greater than
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80 characters. The PAD function should then be written with appropriate

formal parameters:

function PAD 2 (STRING OBJECT : STRING;

width : CRT LINE LENGTH;

pad_char : CHARACTER := ' ') return STRING;

Here, CRT_LINE_LENGTH might be defined as a subtype of INTEGER in the range of

I .. 80. Thus, the test for maximum storage requirements would be based on

CRT LINE LENGTH'last, which is certain to be far smaller than NATURAL'last.

Any attempt to pass a value outside the range of CRT LINE LENGTH will be

rejected by the compiler (for a static value) or at run-time by raising a

CONSTRAINT ERROR.

The CRT_LINE_LENGTH restriction could also be carried out from the calling

side. The first PAD function (PAD_I) could be called as follows:

subtype CRT LINE LENGTH is integer range 1..80;

width : CRT-LINE-LENGTH;

get (width);

declare

pad_string : string (l..width);

begin

pad_string := pad_l ("test", width, '#');
end;

Although the PAD function can accommodate strings of arbitrary length, the

context above ensures that the requested padding width will be within the

range of CRT_LINE_LENGTH (between 1 and 80). An input value outside that

range will raise a constraint error at the point of the GET call.

The advantage to this approach is that the first PAD function can

accommodate a wider variety of input values than the second PAD function,

which is limited to strings of range CRT LINE LENGTH'range. The disadvantage

is that the burden of proof of adequate storage is now placed on the user of

the routine rather than the writer of the routine. As a result, testing must

be more rigorous.
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In summary, the maximum storage requirements of a given array are always

deterministic analytically as a function of:

(array_type'length * array_type'size) + overhead storage

where array type is the type or subtype for a given array and overhead_storage

is any additional storage requirements that an implementation might have in

connection with storing and manipulating arrays. Knowledge of

array_type'length is all that is needed to test for storage capacity adequacy,

using the frame-graph testing approach that has been used thus far. If the

test program applies data that will result in the creation of arrays of the

maximum size (length = array_type'length), the program will be shown to have

adequate storage.
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Section 6

INTRODUCING RECURSION

The storage management requirements of a recursive program are only

determinable if the depth of recursion of the program is determinable. It is

possible to envision a program with an indeterminable maximum depth of

recursion, such as a program whose recursive properties are dependent on

transient input data of arbitrary size or duration. In practice, however,

most recursive programs will have an identifiable maximum depth.

6.1 Restriction Waived

Directly recursive and mutually recursive subprograms are permitted where

the depth of recursion is deterministic.

6.2 Analysis

The nature of the recursive properties of the program in question must be

analyzed in order to determine the depth of recursion for the program. The

parameters, input data, or conditions that impact recursive depth must then be

bound. Once bounds have been established, testing can occur as with iterative

programs based on an acyclic calling graph.

The calling graph for recursive programs is not acyclic. However, because

a maximum depth of recursion has been established, an acyclic equivalent can

be built and analysis can proceed as before. For example, if the calling

graph is:
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and a maximum depth of 4 is determined for B's recursion, the reconstructed

calling graph is:

A

/ \

B C

/1\ I\
DBEFG

/I\
DBE

/I\
DBE

/ \

D E

The amount of storage needed at each level is a function of the parameters

passed at each level. It might be that different amounts of storage are

required at each level, hence the necessity for testing based on the

transformed graph. In other words, because recursion can occur through

multiple paths, it is not adequate to assume that the storage requirements of

each level are identical.

6.3 Implementation-dependent Simplifications

None.

6.4 Application-specific Simplifications

None.

6.5 Case Study

In a simple case, depth of recurslon is directly related to a parameter

value in a linear fashion. An example of such a program is the FACTORIAL

function described in Section 2.5 and repeated below:
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function FACTORIAL (N: positive) return positive is

begin
if n = i then

return i;
else

return n * FACTORIAL (n-l);

end if;

end FACTORIAL;

The depth of recursion for FACTORIAL(X) is X; a call of FACTORIAL(5) will

exhibit five levels of recursion. Thus linearly recursive programs can be

bound easily by applying appropriate constraints to their formal parameters.

For FACTORIAL, the formal parameter N is of type POSITIVE which provides an

implementation-dependent bound that is probably quite large. A particular

application might expect values of n to be less than 25, in which case an

integer subtype in the range (I .. 25) should be defined and used for the

parameter N. Alternat_vely, the bound could be placed on the actual

parameter, although this approach presents a higher risk because checks for

out-of-range values must be performed at each call to the subprogram rather

than once as part the subprogram itself.

A case where depth of recursion is not directly related to a parameter

value is in the procedure TRAVERSE which performs an "inorder" traversal of a

binary tree:

procedure TRAVERSE (T:POINTER) is

begin
if T /= null then

TRAVERSE (T.LEFT);

process (T);

TRAVERSE (T.RIGHT);

end if;

end TRAVERSE;

The depth of recursion of TRAVERSE is dependent on the size (depth) of the

tree T. Because T is implemented as a linked list u_ing access objects, the

maximum size of T is arbitrary; the depth of recursion is thus unknown and

unlimitable within the given context. A depth could be imposed indirectly by

imposing a limit on the size of T during it's construction, using the analysis

methods described in Section 4. This approach will ensure deterministic

storage requirements, but only where adequate cross-testing is performed to
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guarantee the limitations that are assumed by the designers of TRAVERSE.

cross-testing requires a coordinated systems development and verification

effort.

Such

Additional safety can be imposed within the direct context of TRAVERSE

that will guarantee a known level of recursion. A counter is maintained that

tracks the current recursion level. This method is analogous to the counting

method used to track allocations of dispatch packets in Section 4.5.):

package body TRAVERSE_PACKAGE is

MAX RECURSIONS : integer constant := 25; -- defines depth of tree

recursion level : integer range 0 .. MAX_RECURSIONS :- O;

procedure TRAVERSE (T:P01NTER) is

begin
if recursion level >= MAX RECURSIONS then

do_some_processing;
else

recursion level := recursion level + I;

if T /= null then

TRAVERSE (T.LEFT);

PROCESS (T);

TRAVERSE (T.RIGHT);

end If;

recursion level := recursion level - I;

end if;

end TRAVERSE;

end TRAVERSE PACKAGE;
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Section 7

INTRODUCING UNKNOWN N'OHBERS OF TASKS

The initial restrictions outlined in this report prohibited the use of

tasking of any kind (with the exception of the environment task). This

restriction was softened in Section 3, in which a fixed number of tasks is

permitted, thus continuing to prohibit the use of non-static arrays of tasks,

tasks created by allocator evaluation, and tasks defined in iterative or

recursive subprograms. Subsequent sections lifted restrictions on the use of

non-static arrays, allocators, and recursion for non-task types. This section

lifts those restrictions for task types as well.

7.1 Restriction Waived

Tasks that are components or subcomponents of arrays whose size cannot be

determined statically are permitted. Task objects or objects with task-type

subcomponents that are created by the evaluation of allocators are permitted.

Tasks defined in iterative or recursive subprograms are permitted.

7.2 Analysis

The maximum number of tasks that will be created (not the number that will

be simultaneously active) is determined. This maximum is determined

analytically or by the imposition of programmer limitations as described for

non-task types and objects in the preceding sections of this report.

Once the maximum is established, the program is transformed into a test

program that creates that number of tasks and manipulates that program so that

all feasible active-subprogram combinations of each task are attained

simultaneously with all feasible active-subprogram combinations of all other

tasks.
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The number of combinations that results from this approach will generally

be intractable, so safe use of an unpredictable or difflcult-to-predict number

of tasks will generally require the ability to apply one of the

implementation-dependent simplifications described below.

7.3 Implementation-dependent Simplifications

Analysis can be simplified based on a knowledge of task-stack and

task-control-block recycling for a particular implementation. For example,

some implementations will not recycle task storage at all. Others will

recycle storage only after exiting the frame in which the task type is

declared. Still others will recycle some or all task storage when direct

visibility to a task object is lost, even while the task type is still within

scope.

If the implementation's task storage recycle strategy is known, consider

the maximum number of tasks whose storage will be simultaneously allocated

rather than the number of tasks that will be created during the life of the

program. This is analagous to the analysis of the maximum net number of

allocations of a given access type as discussed in Section 4.5. The

difficulty of such an analysis is the potential for the existence of unknown

or difficult-to-predict transient conditions which may effect the temporal

characteristics of the tasks in the program. For example, a given task may

have multiple paths within it that may be taken resulting in a longer or

shorter duration for the task. Further, a task could be delayed

indeterminately while awaiting input data from an input/output device. For

determinable transient conditions, an appropriate analysis must be worst-case

oriented. For indeterminate transient conditions, it would be advisable to

apply hard-coded limitations (such as timed entry calls) or to allow for

conditions that are orders-of-magnitude worse than conditions that are

actually anticipated. In any case, such situations should be isolated to

non-critical programs to minimize risk, and must be thoroughly documented.
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If the compiler enforces limits imposed by STORAGE_SIZE representation

clauses for task types, then a limit can be imposed for each task type and one

task in each type can be tested individually. This greatly reduces the risks

discussed above and eases testing requirements. In addition to the individual

tests, there should be an integrated test to validate that sufficient storage

exists for the established maximum number of task stacks of the sizes specified.

If the implementation can be instrumented to determine the amount of

storage in use by a task at a given point, one task in each task type can be

tested individually to determine the actlve-subprogram combination at which

the task's storage usage peaks. This value can then be used in the

determination of STORAGE SIZE representation clauses if they are supported by

the implementation. Based on these values, the established maximum number of

tasks can be created and tested together with each task at its point of

maximum storage usage.

7.4 Application-specific Simplifications

None.

7.5 Case Study

The maximum total number of tasks that will exist during the life of a

program is determinable within the guidelines presented in this report. The

discussions of the preceding sections present the analysis and testing

required to quantify iterative subprogram calls, non-static composite objects,

designated object allocation, and recursive subprogram calls. Because these

are the mechanisms that can be used for introducing an unknown number of

tasks, applying the same analysis and testing to tasks created through

subprogram calls, non-static arrays, designated object allocations, and

recursive programs should, when combined with the fixed-task guidelines of

Section 3, provide the ability to determine the maximum quantity of tasks for

a given program. This knowledge is sufficient if the program is small and the

worst-case depth can be analyzed.
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For example, Section 3.5 presented a program skeleton combining three

tasks defined at the library unit level resulting in the following calling

graph:

t2 tl -t3

/I._ il\ il\
abd aei abk

I It\ I
c fgh c

This program models the daily routine of some household and includes three

tasks objects labeled TI (task DAILY_ROUTINE), T2 (task GO SHOPPING) and T3

(task GO TO UORK). We now add a task T4 (LISTEN TO RADIO). This task is not

created at the library level, but rather is created any time that a call is

made to subprogram A (procedure SELECT CLOTHING). The new calling graph is:

t2 -tl -t3

/1\ t1\ /1\
t4- -a b d t4- -a e i t4- -a b k

I II\ I
C f g h c

Further, tasks created Within a recurslve subprogram can be quantified by

bounding the recursion and transforming the calling graph from a cyclic graph

to an acyclic graph, as described in Section 6; the following graphs are

equivalent if the maximum depth of recursion is bound at 4:

A

I \

I->B C

\ /l\ I\
TI- ---D E F G

A

I \

B C

/1\ I\
TI- - - D B E F G

/J\
TI---DBE

/J\
TI---DBE

/ \

TI- - - D E
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Similarly, the guidelines presented for the determination of storage

management requirements for designated objects and non-static composite

objects in Sections 4 and 5 apply when the type in question is a task type.

For example, the maximum number of task objects that will be created by a call

to the following procedure is determinable:

procedure unknown (n : in some_number) is

task type tl;

task_array : array (l..n) of tl;

begin

The maximum of task objects of type tl is a function of the length of

array task_array, and so is known to be no more than the highest possible

value of parameter n, or some_number'last. This principle also applies to the

following example of task objects created as designated objects:

procedure unknown (n : in some_number) is
task type tl;

type access tl is access tl;

new tl : access tl;

begin

for i in l..n loop

new tl := new tl;

end loop;

end unknown;

As in the preceding example, the maximum number of tasks that will be

created by a call to this procedure is some number'last.

Although these analysis techniques (and others from the preceding

sections) are adequate for determining the maximum number of tasks that will

be created during the life of a program, they ale insufficient for a complete

analysis of storage management requirements unless it is assumed that storage

that is allocated is never reclaimed and that the execution of the program is

finite. Unfortunately, many practical applications cannot make these

assumptions: the duration of program execution may be infinite (or as long as

power is applied to the system) or may contain too many total tasks than can

be accommodated by available storage in the absence of storage reclamation.
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Therefore, practical analysis and testing of such applications will generally

require foreknowledge of the task storage reclamation process employed by the

run-time system or the availability of STORAGE_SIZE representation clauses for

tasks types.

With this knowledge, the analysis and testing methods described previously

should be sufficient to demonstrate adequate storage capacity.
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Appendix A

TASKING EXAMPLE

This appendix presents an example program called REFORMAT in two versions.

The first version is written using Ada tasking, while the second version is a

purely sequential Ada program. Both versions are written to the identical

specification, provided below. A high-level analysis of storage management

requirements for both versions is also provided.

A.I Specification

Program REFORMAT will read an input file in one format and write an output

file in another format, as follows:

Columns 1-72 of the input file contain twelve six-character fields.

Columns 73-80 of each line are empty. The last card contains XXXXXX in the

last full field and spaces afterward. The sequence of fields in the input

file is to be copied to the output file, but with consecutive occurrences of

the same six-character field replaced by a single occurrence. In the output

file, fields are to be printed 15 per line, with fields on the same line

separated by two spaces.

The name of the input file is DATA.0LD, and the name of the output file is

DATA.NEW.

A.2 Analysis of Storage Management Requirements

The storage requirements for both versions of REFORMAT are determinant.

The non-tasking version adheres to the guidelines of Section 2: there are no

instances of recursion, composite objects with non-static bounds, designated

variables, or tasks. Therefore, the program can be tested for adequate

storage by constructing the calling graph (below) and exercising each path
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within it. (In this calling graph, subprograms from the pre-defined package

TEXT IO are highlighted with capitalized identifiers.)
m

reformat

i

/ /

OPEN CREATE

/

initialize

\

\

\

\

\

\

I \ \

process_input_fields write last line CLOSE
/\ -/\ -

/ \ / \

I \ I \

get_field \ I PUT_LINE
/ \ /

e

/ \ /

\ I --\ I--

\I \I

get card put line
/\ 7\

I \ I \

I \ I \

GET SKIP LINE PUT NEW LINE

TEST PATHS:

reformat--> OPEN

reformat--> CREATE

reformat--> initialize--> get_card--> GET
reformat--> initialize--> get card--> SKIP LINE

reformat--> process_input_fields

reformat--> process_input_fields--> get_field--> get card--> GET

reformat--> process_input_fields--> get_field--> get_card--> SKIP_LINE

reformat--> process_input_fields--> put_line--> PUT

reformat--> process input fields--> put_line--> NEW_LINE

reformat--> write lust line--> put_line--> PUT

reformat--> write last line--> put_line--> NEW_LINE
reformat--> write-last-line--> PUT LINE

reformat--> CLOSE

In practice, a single test case can be constructed to test all of these

paths.

The tasking version of REFORMAT makes use of no subprograms at all except

those of the pre-defined package TEXT I0, which are again highlighted in the

calling graph as capitalized identifiers:
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input_task, reformat out put_task
/IX il\

il\ il\
i I \ i I \

/ I \ i I \
OPEN GET SKIP LINE CREATE PUT NEW LINE

w

Based on the analysis described in Section 3, all feasible

active-subprogram combinations of each task should be tested simultaneously

with all active-subprogram combinations of each other task. In this case,

such a test would require modification to the TEXT I0 package routines to

allow them to lock into the dummy task FREEZE CALLER. Because modification of

a predefined package for test purposes may not be possible, an alternative

method must be chosen (this would not be a typical problem with most

mission-critical program because embedded systems with critical storage

restrictions will normally supply their own customized input/output packages.)

The preferred approach is the use of STORAGE SIZE representation clauses,

which allow the independent testing of each individual task.

It is interesting to note the nature of the differences between the two

REFORMAT versions in terms of dynamic storage management requirements. The

non-tasking version will require very simple storage management: a single

subprogram stack is all that is needed. Alternatively, with no recursion or

multi-tasking, all storage could be allocated pre-runtime. The tasking

version requires somewhat more sophisticated storage management, but still is

deterministic. Again, there is no recursion, so each of the three tasks are

bounded in their storage requirements. A fixed size stack for each task will

cover the dynamic storage management requirements of the proram.

In terms of the total storage needs, it is difficult to compare the two

programs without knowledge of the underlying implementation. The non-tasking

version requires additional variable and type declarations, while the tasking

version requires additional support for the task declarations. To choose the

version that is the least storage-intensive, an analysis must be conducted

based on the implementation-dependent storage requirements for subprograms,

objects, type definitions, and tasks. Depending on the imlementation in

quesstion, either the tasking or the non-tasking version may be found to be

more storage-efficient.
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TASKING EXAMPLE

A.3 Tasking Version of Reformat

procedure Reformat is

subtype Field_Subtype is string (1 .. 6);,

Previous Field : Field_Subtype;

This Field : Field_Subtype;
Final Field : constant Field Subtype := "XXXXXX";

task Input_Task is

entry Get Field (Field: out Field_Subtype);

end Input Task;

task Output_Task is

entry Put Field (Field: in Field Subtype);

end Output_Task;

task body Input_Task is separate;

task body OutputTask is separate;

begin

Input_Task.Get_Field (Previous_Field);

loop

loop

Input_Task.Get Field (This Field);
exit when This-Field /= Previous Field;

end loop;

Output_Task. Put_Field (Previous_Field);

Previous Field := This Field;

exit when Previous Field = Final Field;

end loop;

Output_Task. Put_Field (Final_Field);

end Reformat;
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TASKING EXAMPLE

with Text Io; use Text_Io;

separate (Reformat)

task body Input_Task is

Input File : File Type;

Next_Field : Field_Subtype;

begin

Open (Input_File, In_File, "DATA.OLD");

Main_Loop:

loop

for I in 1 .. 12 loop

Get (Input_File, Next Field);

accept Get Field (Fieid: out Field Subtype) do

Field := Next Field;

end Get Field;

exit Main Loop when Next_Field = Final_Field;

end loop;

Skip Line (Input_File);

end loop Main Loop;

Close (Input_File);

end Input_Task;

with Text Io; use Text_lo;

separate (Reformat)

task body Output_Task is

Output_File : File Type;

Next_Field : Field_Subtype;

begin

Create (Output_File, 0ut_File, "DATA.OLD");

Main_Loop:

loop

for I in 1 .. 15 loop

accept Put Field (Field: in Field_Subtype) do

Next Field := Field;

end Put-Field;

Put (Output File, Next Field);

if I < 15 then

put (" ");

end if;

exit Main_Loop when Next_Field = Final Field;

end loop;

New Line (0utput_File);
end loop Main Loop;

Close (Output_File);

end 0utput_Task;
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TASKING EXAMPLE

A.4 Non-Taskin_ Version of Reformat

with Text Io; use Text Io;

procedure Reformat is

subtype Field is string(l .. 6);

type Card_Image is array(l .. 12) of Field;

type Line_Image is array(l .. 15) of Field;

Input_File

Output_File

Input_Image

Output Image
Previous Field

This Field

Final Field

: File_Type;

: File_Type;

: Card_Image;

: Line Image;

: Field;

: Field;

: constant Field := "XXXXXX";

Input-Field Number : integer range 1 .. 12 := 2;

Output_Field_Number: integer range I .. 15 := i;

procedure Get Card (File: in File_Type; Image: out Card_Image)

is separate;

procedure Put Line (File: in File_Type; Image: in Line_Image)

is separate;

procedure Initialize

procedure Get Field

procedure Process_Input_Fields

procedure Write Last Line

is separate;

is separate;

is separate;

is separate;

begin

Open (Input_File, In File, "DATA.OLD");

Create (Output_File, OuT_File, "DATA.NEW");

Initialize;

Process_Input Fields;
Write Last Line;

Close (Input_File);

Close (Output_File);

end Reformat;
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TASKING EXANPLE

separate (Reformat)

procedure Get_Card (File: in File_Type; Image: out Card_Image) is

begin

for I in I .. 12 loop

Get (File, Image(1));

end loop;

Skip_Line(File);

exception

when others => null;

end Get Card;

separate (Reformat)

procedure Put_Line (File: in File_Type; Image: in Line_Image) is

begin

for I in 1 .. 15 loop

Put (File, Image(I));

Put (File, " ");

end loop;

New Line (File);

end Put Line;

separate (Reformat)

procedure Initialize is

begin

Get Card (Input File, Input Image);

Pre_ious Field ?= Input_Image(l);

end Initialize;

separate (Reformat)

procedure Get_Field is

begin

loop

This Field := Input_Image (Input Field_Number);

if Input Field Number /= 12 then

Input-Field-Number := Input Field_Number + I;

else

Input Field Number := I;

Get Card (Input_File, Input_Image);

end if?

exit when This Field /= Previous Field;

end loop;

end Get Field;
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TASKING EXAMPLE

separate (Reformat)

procedure Process_InputFields is
begin

loop

Get Field;

Output_Image (Output_Field_Number) := Previous_Field;

if Output Field Number /= 15 then

Output_Field_Number := Output_Field_Number + I;
else

Put Line (Output File, Output Image);

Output_Field_Number := I;

end if;

Previous_Field := This_Field;

exit when Previous Field = Final Field;

end loop;

end Process_Input_Fields;

separate (Reformat)

procedure Write Last Line is

begin

Output Image (Output_Field_Number) := Previous_Field;

for I in Output Field Number + 1 .. 15 loop

Output Image(1) :=-" ".

end loop;

Put Line (Output_File, Output_Image);

end Write Last Line;
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Appendix B

STORAGE MANAGEMENT RISKS FOR Ada

This appendix summarizes the various aspects of Ada usage resulting in

dynamic storage management requirements. Calling graph figures and code

fragments are used to depict each aspect. It is intended as a highly

simplified reference source to be used as a companion to this report.

I. Direct Recursion

a

I
/--b

\ /

, Mutual Recursion

a

I
/--b

I I
I c
\ /

. Objects with Non-Static Bounds

procedure unknown (n : in integer) is

an array : array (1..n) of integer;
begin

oo,

procedure unknown (n : in positive) is

type stack (n: integer) is
record

s: array (l..n) of integer;

top: integer := O;

end record;

begin
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o Parameters with Non-Static Bounds

procedure main is

type arbitrary is array (positive range <>) of integer;

procedure test (arb: arbitrary) is

begin

end main;

function concat (a, b: string) return string is

begin

return a & b;

end concat;

Do

W0-126

Unknown Number of Designated Objects

procedure alloc (n: integer) is

type big_rec is
record

a: integer;

b: string (1..5);

end record;

type big_rec access is access big rec';

new_big rec:-big_rec_access;

begin

for i in I .. n loop

new big_rec := new big_rec;
end loop;

end alloc;

procedure alloc (n: integer) is

type big rec is
record

a: integer;

b: string (1..5);

end record;

type big_rec_access is access big_rec;

new_big_rec: array (l..n) of big_rec_access;

begin

for i in 1 .. n loop

new_big_rec(i) := new big_rec;

end loop;

end alloc;
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, Multiple Simultaneous Invocations of a Subprogram

tl t2 t3

\ I /
\1/

a

, Variable Array of Task Objects

procedure unknown (n : in integer) is

task type tl;

task_array : array (l..n) of tl;

begin
i

,o,

, Task Object Declared in Variable Loop

procedure unknown (n : in integer) is

task type tl;

type access tl is access tl;

new tl : access tl;

begin

for i in l..n loop

new tl := new tl;

end loop;

end unknown;

, Task Object Declared in Recursive Subprogram

a

I
/--b ...... Tn

\ /
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